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a b s t r a c t

A robust three-dimensional discrete particle model (3D DPM) for unstructured meshes is presented to
model the gas–solid flows in fluidized beds. The finite volume method is used to discretize the governing
equations of the gas phase. Inter-particle interactions are taken into account through the hard-sphere
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omputation efficiency

approach. The numerical models for the solid phase were implemented as a separate module in FLUENT
by overcoming some limitations of the user-defined function approach. A multifaceted numerical strategy
was developed to enhance the computational efficiency. Simulation results demonstrate the ability of
the model to capture many important characteristics such as bubbling, spouting, particle clustering and
core–annulus flow structures in gas–solid systems at specified operating conditions.
ard-sphere model
nstructured mesh

. Introduction

Gas–solid fluidized beds are widely used in the chemical
nd petrochemical industries for a large variety of processes,
uch as catalytic cracking, drying, coating, coal gasification and
ombustion. The ongoing research efforts to develop numeri-
al models for such complex systems are significant. Due to the
ulti-scale character of these systems, several models at differ-

nt scale levels have been formulated [1–4]. At the macroscopic
evel, mixture or two-fluid models (TFMs) need closure laws to
escribe the two-phase interaction and the particulate matter rhe-
logy. Although these macroscopic models are the most tractable
o simulate actual gas–solid systems that could help their opti-

ization, they are known to be silent about microstructure and
hey have never acknowledged the very important microstruc-
ural properties that are induced by particle–fluid interaction.
his has motivated the recourse to finer numerical descriptions
t the microscopic scale. Indeed, at that level of description,
irect numerical simulation (DNS) has been used to fully resolve
he gas flow details around the particles. DNS models based on
attice Boltzmann method, immersed boundary method and fic-

itious domain or arbitrary Lagrangian–Eulerian methods do not
equire closure relations. However, they are computationally inten-
ive and resource demanding when applied to dense gas–particle
ystems of practical relevance, which are three-dimensional and

∗ Corresponding author. Tel.: +86 7592383720/13828261515.
E-mail address: chunliangwu@gmail.com (C.L. Wu).
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contain a large number of particles. This has made DNS models
unwieldy to apply for practical engineering problems. Notwith-
standing this limitation, however, the DNS results are of great value
to understand the physical mechanisms through which fluid and
particle interact and help derive more accurate closure relations
[5,6].

Between these two levels of numerical description, a meso-
scopic approach for particulate flows has been developed under
the name of discrete particle model (DPM). In this approach, the
particle motion is described in a Lagrangian framework by directly
solving the Newtonian kinetic equations of each individual parti-
cle. The particulate-phase constitutive relations are not required
because the particle–particle interactions are modeled through a
two-variant collision strategy; the hard-sphere variant or the soft-
sphere variant.

The DPM has become a versatile tool since the pioneering
works that focused on its development and validation [1,2,7,8]. It
has been widely used over the last decade to study the compli-
cated flow behaviors in gas–solid fluidized beds. The numerical
results obtained have demonstrated the powerful capabilities of
the method [9–13]. Although the gas flow details around particles
are not well determined, the particle motion is resolved at such
a particle scale that many important features related to the parti-
cle motion in fluidized beds are reasonably captured. For instance,

several investigations based on DPMs have helped to understand
that the formation of heterogeneous structures in fluidized beds is
attributed to the combination of energy dissipation due to inter-
particle interactions and the strong dependence of the inter-phase
drag force on the void fraction [1,8,13–16]. These closure relations

ghts reserved.
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or the inter-phase drag force are deduced from experimental data,
heoretical or numerical results of micro-scale models [17–19].

The state-of-the-art review on discrete particle modeling was
ecently presented by Deen et al. [3]. Although a lot of progress
as been made on the numerical aspects of DPM, many studies
ere based on the two-dimensional (2D) model and only struc-

ured regular grids were adopted to discretize the computational
omain. A 2D model that restricts the degree of freedom of two
aturally interacting particles to be scattered in a natural three-
imensional domain to be confined to a 2D space is restrictive to
e of any practical relevance. Despite the relatively high compu-
ational cost of 3D DPM compared to 2D DPM, it appears to be
he only realistic way to simulate many industrial processes tak-
ng place in complex geometries. From a theoretical point of view,
he 2D model for instance cannot characterize the radial hydrody-
amics in cylindrical circulating fluidized bed (CFB) risers because
he flow in a riser is not axis-symmetric in most of the cases. There-
ore, 3D DPM implemented in conjunction with unstructured grid
hould be developed and extended to incorporate necessary details
o model real-world chemical engineering problems. Compared to
tructured grids, unstructured grids have the natural flexibility to
esh complex geometries and they are widely used in numeri-

al simulations of single-phase flow [20] and two-phase flow with
ree surface [21]. They have also been applied to simulate gas–solid
ows in fluidized beds based on TFM [22]. It is almost unavoid-
ble to use unstructured grids to mesh complex solution domains
haracterizing many real-life fluidization systems. These systems
sually contain many complex internals such as immersed tubes,
raft tubes or baffles that make the use of the structured grid inef-

ective. However, the use of unstructured grids in conjunction with
PM brings about some numerical difficulties regarding the void

raction calculation for arbitrary particle locations and cell shapes.
hese issues should be well addressed in order to do not discount
he advantages brought by the use of unstructured grids.

The high computational cost linked to 3D DPM has limited its use
o applications in a laboratory scale with the number of particles
ypically less than 100,000. This shortcoming can be overcome by
esigning a computationally efficient multifaceted numerical strat-
gy. It is deemed that the model accuracy and its implementation
fficiency depend strongly but not solely on: (1) 3D void fraction
omputation, (2) inter-phase coupling, and (3) collision event han-
ling through proper data structures.

The objective of this work is to develop a generic and efficient
ard-sphere discrete particle model for gas–solid flows in arbitrary
D domains. A methodology of implementing the model in the
ommercial CFD code FLUENT is described along with an efficient
any-sided numerical strategy. The paper is organized into the fol-

owing sections. First, a brief discussion of the equations governing
oth gas and particles dynamics is presented followed by a section
n how the issues surrounding their implementation in FLUENT
re resolved. Subsequently, the multifaceted numerical strategy is
etailed. Finally, the 3D DPM is validated on a number of prob-

ems involving gas–solid fluidized beds for which experimental
ata exist.

. Governing equations of the gas–particle system

The governing equations of the gas phase mainly follow the
olume-averaged form of the two-fluid model (Model A) presented

y Gidaspow [17]. This set of equations has been widely applied in
he discrete particle/element studies mentioned in the introduc-
ion. The particles’ motion obeys Newtonian second law of motion
nd particle collisions are described by a three-parameter hard-
phere model [23,24]. Interactions between the two phases are
ccounted for through the momentum exchange term.
Journal 152 (2009) 514–529 515

2.1. Gas-phase hydrodynamics

In accordance with the two-fluid model, the conservation of
mass is balanced by the convective mass fluxes without inter-phase
mass transfer:

∂

∂t
(ε�g) + ∇ · (ε�gug) = 0 (1)

where �g is the density of the gas phase, ε is the void fraction and
ug is the gas velocity.

The momentum balance equations are similar to the single-
phase momentum equations:

∂

∂t
(ε�gug) + ∇ · (ε�gugug) = −ε∇p + ∇ · (ε ¯̄�g) + Sg + ε�gg (2)

where p is the static pressure and ¯̄�g the stress tensor. The source
term Sg due to particle–fluid drag interaction was suggested by
Goldschmidt et al. [23]:

Sg = − 1
V

∫
V

NP∑
k=1

Vp,kˇ

1 − ε
(ug − up,k)ı(x − xp,k)dV (3)

where V is the integral volume, Vp is the particle volume, Np is
the particle number, up is the particle velocity and the ı function
ensures that the reaction force acts as a point force at the position
of the particle. ˇ is the drag coefficient, which is a function of the
particle Reynolds number, Rep and the void fraction, ε.

2.2. Dispersed phase hydrodynamics

Since the gas inertia is much smaller than that of the solid par-
ticles, only the drag and the pressure gradient forces are taken into
account in the particle momentum equation, which is written in a
Lagrangian framework and reads as follows:

mp
dup

dt
= −Vp∇p + Vpˇ

1 − ε
(ug − up) + mpg (4)

where m is the particle mass.
In the hard-sphere approach, collisions among dispersed par-

ticles are assumed binary and quasi-instantaneous and particle
contact occurs at one point. During a collision only impulse forces
are considered. The relative velocity v12 at the contact point
between two particles with velocities v1 and v2 is defined as

v12 = (v1 − v2) − (r1�1 + r2�2) × n (5)

where r1 and r2 are the radii, and �1 and �2 the angular velocities.
The normal and tangential unit vectors that define the collision

coordinate system are

n = x1 − x2

|x1 − x2| (6)

t = v0
12 − (G0

12 · n)n∣∣v0
12 − (G0

12 · n)n
∣∣ (7)

where the superscript 0 denotes conditions just before collision
and G12 is the relative velocity of particle centroids. The equations
of motions of the two colliding particles are given in the following:

m1(v1 − v0
1) = J

m2(v2 − v0
2) = −J

I1
r

(�1 − �0
1) = J × n (8)
1

I2
r2

(�2 − �0
2) = J × n

where I1 and I2 are the moments of inertia and J is the impulse
vector.
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sure and velocity in the SIMPLE algorithm for incompressible gas
flow, the explicit pressure gradient source term in the momentum
16 C.L. Wu et al. / Chemical Engin

By introducing the first parameter: the coefficient of normal
estitution en, we can get the normal component of the impulse
ector:

n = −m1m2(1 + en)
v0

12 · n
(m1 + m2)

(9)

he second and the third collision parameters are the coefficient
f friction �f and the coefficient of tangential restitution et. These
wo collision parameters represent two kinds of collisions, namely
ticking and sliding in the tangential impact process. The tangential
omponent of impulse is given by

t,sliding = −�f Jn for �f <
2m1m2(1 + et)v0

12 · t
7(m1 + m2)Jn

t,sticking = −(1 + et)
2m1m2v0

12 · t
7(m1 + m2)

for �f ≥ 2m1m2(1 + et)v0
12 · t

7(m1 + m2)Jn
(10)

ith the total impulse vector known the post-collision velocities
an be computed from Eq. (8).

. Model implementation in FLUENT

The commercial CFD software FLUENT is a state-of-the-art com-
uter program for modeling fluid flow and heat transfer in complex
eometries. Several mathematical models for two-phase flow are
lready coded in FLUENT, such as the mixture model, the two-fluid
ulerian model, the VOF and the discrete phase model. Only the lat-
er model can be used to simulate dispersed gas–solid flows in the
agrangian framework. However, it is limited to sufficiently dilute
ases where particle–particle interactions and the effects of the
article volume fraction on the gas phase are negligible [25].

In this section, we detail an efficient methodology to implement
he discrete particle model in FLUENT as described in Section 2. In
PMs, due to the weak gas-phase inertia compared to that of the
ispersed phase, the complex gas–particle system is often divided

n two subsystems or processes that are solved separately at each
imulation time step. During the first step, the two-phase interac-
ions are taken into account while the particles are assumed fixed in
pace. Thus, only the momentum exchange between the two phases
s accounted for in this first step. The gas-phase governing equations
re solved using a finite volume/difference method together with
he particle momentum equation. The system of two-phase equa-
ions is solved using either an explicitly segregated scheme or an
mplicitly coupled algorithm. The time step should be selected at
east one order smaller than the particle response time to capture
he two-phase interaction. In the second step, all possible colli-
ions between particles are detected and the collision dynamics is
omputed for each occurring collision. During this step, all collision
vents are handled one by one in a chronological order.

In a previous work, we developed a in-house code of the hard-
phere DPM on 2D unstructured mesh [24]. However, in this work,
e choose FLUENT as our DPM platform. This is because it uses the
nite volume method to solve the transport equations and pro-
ides complete mesh flexibility supporting both structured and
nstructured meshes that can be generated for complex geome-
ries, which are often encountered in fluidization system, such
s cylindrical riser and conical spouted fluidized bed. Also the
lgebraic multi-grid (AMG) solver used in FLUENT is very robust
nd several pressure–velocity coupling algorithms are offered as

ptions. In addition, many in-line models coded in FLUENT has
een validated and successfully applied to solve fluid flow and
eat transfer problem in industry, which supports a future possi-
ility to further integrate these models into the present DPM code
s an extension. The ability of the user-defined functions (UDFs)
Journal 152 (2009) 514–529

supported in FLUENT allows the user to enhance the standard fea-
tures of the code, such as customized boundary conditions, material
properties and source/sink terms in the transport equation. These
FLUENT features enable us to integrate the hard-sphere model into
its basic fluid flow solver. In the following, we show first the lim-
itation of a normal UDF development of the DPM, then how to
overcome this limitation by re-arranging the governing equations
of the gas phase.

3.1. Normal UDF implementation

It is not applicable to develop the DPM code grounding upon the
standard multiphase flow models (such as the discrete phase model
or the Eulerian model) in FLUENT, since the code details of these
models are hidden from the user and it is difficult to disable some
unnecessary features linked to these models. The developed code
is supposed to be fully customized by the user, especially regarding
the hydrodynamics of the dispersed particles. We start from the
basic solver for the incompressible single-phase flow, governed by
the following set of equations:

∂�

∂t
+ ∇ · (�ug) = 0 (11)

∂

∂t
(�ug) + ∇ · (�ugug) = −∇p + ∇ · ( ¯̄�g) + Sm + �g (12)

As said above, the DPM procedure consists of the resolution of
the gas and particle governing equations (Eqs. (1), (2), and (4)) at
the beginning of each time step followed by the particle collision
dynamics. Before solving the two-phase equations, the void frac-
tion is calculated according to the particle positions and the cell
geometry of the finite volume meshes. The basic steps of the model
implementation are shown in Fig. 1. By comparing the single-phase
governing equations to those of the gas phase in DPM, one finds a
straightforward way to incorporate DPM into FLUENT. It consists of
introducing one UDF to compute the density property of the gas
phase and another one to calculate the momentum source terms
due to two-phase coupling, as follows:

� = �gε (13)

Sm = Sg + εp∇p (14)

where εp = 1 − ε is the particle volume fraction. User-defined mem-
ories for each cell are used to store the calculated void fraction and
the source value.

After a comprehensive numerical testing, however, we found
that the above UDF approach cannot correctly capture the bubbling
characteristic of the Geldart B particles in fluidized beds. In addi-
tion, very slow convergence of the solution was noticed when the
SIMPLE algorithm was used in conjunction with the AMG solver.
Through a careful examination of the code, it was found that the
above problem is due to the incorrect pressure predictions in the
bed that might be incurred by the momentum source term evalu-
ation. The second part in the right hand side of Eq. (14) represents
the particle reaction force of the pressure gradient exerted on the
gas phase, which is treated as an explicit cell source term and is
not discretized as the main coefficients in the pressure correction
equation. Because of the strong coupling description of the pres-
equations results in an adverse convergence of the pressure correc-
tion process. As a conclusion, the explicit calculation of the pressure
gradient force fails to correctly predict the two-phase interaction.
This problem can be overcome by considering an improved UDF
implementation as shown below.
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Fig. 1. Flowchart of the DPM for FLUEN

.2. Improved UDF implementation

To overcome the limitation of the normal UDF approach, we
rstly re-organize the continuum equation (Eq. (1)) of the gas phase
s follows:

∂�g

∂t
+ ∇ · (�gug) + �g

ε

(
∂ε

∂t
+ ug · ∇ε

)
= 0 (15)

r

∂�g

∂t
+ ∇ · (�gug) = Sc (16)
ith

c = −�g

ε

(
∂ε

∂t
+ ug · ∇ε

)
(17)
the simulation time given by the user.

If the void fraction is considered as a scalar property of the gas
phase, Eq. (16) demonstrates that the flow flux in unit gas volume
equals the relative variation rate of the void fraction if we con-
sider the fact that the gas density is constant. The terms in the
left hand side of Eq. (16) represent the net mass outflow in unit
gas volume. The term in the right hand side can be considered as
a mass source term due to the incompressible constraint of the
gas phase and the volume fraction variation caused by the particle
motion.

The momentum equations of the gas phase are re-arranged as
follows:
ε
∂

∂t
(�gug) + ε∇ · (�gugug) + �gug

(
∂ε

∂t
+ ug · ∇ε

)

= −ε∇p + ∇ · (ε ¯̄�g) + Sg + ε�gg (18)
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Case 1 : the particle is wholly contained in C0, then Vn = 0.
Case 2 : a segment of the volume of the sphere is shared by cell Cn

totally through one of its faces. The volume of this segment
can be calculated by Vn = �r2

n (rp − (1/3)rn), where rn = rp − h
18 C.L. Wu et al. / Chemical Engin

r

∂

∂t
(�gug) + ∇ · (�gugug) = −∇p + ∇ · ( ¯̄�g) + �gg + Sm (19)

here

m = Sg

ε
− ug�g

ε

(
∂ε

∂t
+ ug · ∇ε

)
+

¯̄�g · ∇ε

ε

r

m = Scug + 1
ε

(Sg + ¯̄�g · ∇ε) (20)

he first part in the above source term as shown in Eq. (20) is the
as momentum increase due to the variation of the void fraction.
ince the momentum variation rate shown in the left hand side of
q. (19) is evaluated in unit gas volume, the momentum exchange
ate due to gas–solid interactions should also be evaluated in unit
as volume, just as shown in the second part of the source equation
Eq. (20)). The third part is an additional viscous force due to the
on-uniform distribution of void fraction, which is much smaller
ompared to the other two parts according to our numerical simu-
ations. Thus this term is neglected in the final implementation of
he code.

By comparing the deduced governing equations (Eqs. (16) and
19)) for the gas phase to those (Eqs. (11) and (12)) for single-phase
ow, it can be seen that their incorporation into FLUENT is straight-

orward. Indeed, only the source terms given above are defined as
DFs for the gas continuity and momentum equations. In each time

tep and before calculating these source terms, the gradient of the
oid fraction is calculated altogether with its local variation rate.
he momentum source terms are linearized as follows:

m = Sa + Bug (21)

= Sc − 1
V

∫
V

NP∑
k=1

ˇVp,k

ε(1 − ε)
ı(x − xp,k)dV (22)

a = 1
V

∫
V

NP∑
k=1

ˇVp,kup,k

ε(1 − ε)
ı(x − xp,k)dV (23)

he above approach exhibits a good convergence performance of
he FLUENT AMG solver when the SIMPLE algorithm is applied. In
ddition, the implemented model was found to be able to capture
any important phenomena in gas–solid fluidized bed, as shown

ater. The improved approach brought about the following advan-
ages: (1) no explicit term related to the pressure gradient is present
n the pressure correction equations and only the velocities and
he void fraction are involved. Thus the pressure can be correctly
redicted. (2) The source terms in the gas momentum equations
re linearized and the coefficients are automatically absorbed into
he discretized equations as principle coefficients, which greatly
mproves the numerical stability. (3) The resulting source terms
re more related to the void fraction, i.e. to its local variation rate
nd gradient and they can be calculated very precisely based on
he particle position. As shown in Fig. 1, when solving the particle

omentum equations, the source terms should be calculated and
tored in user-defined memories (UDMs) to avoid additional loop,
ince the user-defined source functions are called by the solver at
he cell level.

. Multifaceted numerical strategy
To ensure an efficient implementation of the discrete particle
odel used to simulate dense gas–particle systems on unstructured

rids, a many-sided numerical strategy is designed. This strategy
s based on: (i) an accurate calculation of the void fraction, (ii) a
Journal 152 (2009) 514–529

strong implicit coupling of the two-phase interaction and (iii) an
adequate data structure designed to obtain a complexity O(1) time
per collision regarding the event handling of particle collisions. The
corresponding codes are also plugged into FLUENT as additional
modules.

4.1. Void fraction calculation

The void fraction should be estimated in a prudent way in order
to support the unstructured mesh feature of FLUENT. This con-
stitutes a challenge when particles are not fully contained in one
cell that can have any shape (wedged, tetrahedral, or hexahedral)
and/or can intersect particles through any of its boundaries (node,
edge or face). Indeed, when the centre of a particle locates on an
edge shared by two 2D cells or on a face shared by two 3D cells,
there will be a considerable error in the calculated porosity if the
volume of this particle is not accurately shared between these two
cells. Since the porosity plays a very important role in the local mass
and momentum balance of the gas phase and the drag coefficient
are found to be strongly dependent on it, the said errors should be
avoided as far as possible.

An analytical method to calculate the void fraction for general
3D unstructured meshes is proposed herein. It is developed for cells
of different shapes (wedged, tetrahedral, or hexahedral) and for
different particle–cell intersections (node, edge or face). Four cases
are identified for which the volume Vn is accurately computed as it is
portrayed in Fig. 2. These four cases are deemed to cover all possible
configurations for the cell–particle intersection. Obviously if Vn is
known then we get V0 = (4/3)�r3

p −
∑

Vn. Herein V0 and Vn (n = 1,
2) are the volume of the cell C0 hosting the centre of the particle and
the ones of the other cells Cn that share the particle, respectively.
Fig. 2. Particle positions in 3D cells.
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sh (ca

C

Fig. 3. Accurate calculation of porosity on 3D unstructured me

and h is the distance from the particle centre to the face
splitting the particle sphere. In this case, the particle may
be split into several parts by more than one face if the angle
between the two adjacent faces of a cell is sharp.

ase 3 : one edge (or more than one) of the cell C0 passes through
the sphere, so the particle is split into several parts by all the
faces sharing this edge. To analyze this case, we specify this
edge as VV′, the particle centre O as the origin of the local
cylindrical coordinate system, the line parallel to VV′ as the
z-axis, and the line normal to the edge VV′ as the x-axis (see
Fig. 3a). The plane at z = 0 is shown in Fig. 3b and the x–z
plane in Fig. 3c. The volume of the sphere cut by the two
faces (face 1 and face 2) of the cell Cn can be calculated by

Vn(l, �1, �2) = V(l, �2) − V(l, �1) (24)

V(l, �) = 2

∫ H

0

S(l, �, z)dz (0 ≤ � ≤ �

2
, 0 < l < rp)

V(l, �) = �s2
(

rp − s

3

)
− 2

∫ H

0

S(l, � − �, z)dz

(
�

2
< � ≤ �, 0 < l < rp

)
Here the integrand S is defined as

S(l, �, z) = 1
2

r(z)2

[
� − arcsin

(
l sin �

r(z)

)]

− 1
2

l(
√

r(z)2 − l2 sin2 � − l cos �) sin �

r(z) =
√

r2
p − z2 and s = rp − l sin �. The upper limit of the

above integrals is H =
√

r2
p − l2 (0 < l < rp).

In the above definition of Vn, l is the distance from the
particle centre to VV′, �1 and �2 are the angles from the x-axis
to face 1 and face 2, respectively.
S(l,�,z0) represents the area of the pseudo sector VMP at
the height z = z0. Integration yields

V(l, �) = 2

∫ H

0

S(l, �, z)dz = I0 + l sin �

3
(r2

p I1 + I2) (25)
se 3): (a) perspective view, (b) plane at z = 0 and (c) x–z plane.

I0 = 1
2

l sin �

∫ H

0

(l cos � −
√

r(z)2 − l2 sin2 �)dz

= 1
2

l2H sin � cos �

− 1
2

l sin �(r2
p − l2 sin2 �) arcsin

(√
r2
p − l2

r2
p − l2 sin2 �

)

I1 =
∫ rp

l

1
r2

√
r2
p − r2

r2 − l2 sin2 �
dr2

= 2rp

l sin �
arctan

(
H tan �

rp

)
− 2 arctan

(
H

l cos �

)

I2 = 1
2

∫ rp

l

√
r2
p − r2

r2 − l2 sin2 �
dr2

= 1
2

(r2
p − l2 sin2 �) arctan

(
H

l cos �

)
− 1

2
Hl cos �

Once the length l and the angle � are calculated according to
the positions of the particle and the cell faces, the above inte-
grals yield the sphere volume encompassed by the x–z plane
and the face. All the faces sharing the edge VV′ are identi-
fied first and the angle from the local x-axis to each face are
calculated in a loop to avoid repetitive computations. Then
the volume of a sphere segment cut by any two faces can be
calculated using Eqs. (24) and (25). If the two edges of a cell
face form a very sharp angle, these two edges may both pass
through the particle. For this situation, a similar procedure
as described above can be applied for each edge yielding the
fractional volumes.

Case 4 : a node or vertex V that is common to the cell C0 and
its neighboring cells Cn, is occupied by a particle. The cal-
culation of the volume Vn of the particle shared by Cn is
performed as follows. First the vertex V is identified by

checking all the vertices of the cell C0. The intersection
points of each edge (sharing V) with the particle surface are
calculated. For cell Cn, these intersection points are denoted
by P, Q and R, since there are only three edges between the
three faces (denoted by f1, f2, f3) for a tetrahedral, wedged



520 C.L. Wu et al. / Chemical Engineering

r
m
s
e
i
t
t
t
u

4

p
t
r
d
m
l
a
s
l

S

(
a

Fig. 4. Calculation of porosity on 3D unstructured mesh (case 4).

or hexahedral cell that are intersected by the particle (see
Fig. 4). Then the particle volume Vk encompassed by the
face PQR and fk (k = 1, 2, 3) can be calculated by the approach
described above in case 3 for the sphere volume surrounded
by any two faces. Finally we obtain:

Vn = Vt +
(

Vsg −
3∑

k=1

Vk

)
(26)

Vt = 1
6

|(PR × PQ ) × PV |

where Vsg is the volume of the sphere segment split by the
face PQR.

The analytical method presented above, though accurate, is
elatively time-consuming compared with the point approximate

ethod. This is due to the many arcsine and arctangent expres-
ions that have to be evaluated for case 3 and case 4. To avoid
valuating repeatedly these complex expressions when calculat-
ng the void fraction at each time step, we introduced the look-up
able. It consists of a pre-computed mapping table to accelerate
he computation of the analytical solution. More about the look-up
able method and the development of the analytical method for 2D
nstructured mesh can be found in Wu et al. [26].

.2. Implicit two-phase coupling

The coupling between the gas and particle phases is accom-
lished through the inter-phase volume fraction exchange and
he inter-phase momentum transfer. Since the particle motion is
esolved in the Lagrange framework, the volume fraction exchange
ue to particle motion appears only in the gas continuity and
omentum equations. The resulting source term can be calcu-

ated very precisely, since the void fraction is accurately computed
ccording to the method described in Section 4.1. The discretized
ource term in the gas mass conversation equation is given as fol-
ows:

�g

(
εn+1 − εn

n+1 n+1

)

c = −

εn+1 	t
+ ug · ∇ε (27)

The gas momentum source due to volume fraction exchange
the first part in the right hand side of Eq. (20)) is also calculated
ccurately.
Journal 152 (2009) 514–529

The semi-implicit scheme is used to discretize the particle
momentum equation (Eq. (4)). The nonlinear drag coefficient is
evaluated explicitly, which results in a system of linear equations.
When only buoyancy and two-phase drag forces are taken into
account, the particle velocity is calculated as follows:

mp
un+1

p −un
p

	t
= − Vp(∇p)n+1

p + Vpˇn
p

1 − εn+1
p

(un+1
g,p − un+1

p ) + mpg (28)

where the Eulerian properties such as void fraction ε, static pressure
gradient �p and gas-phase velocity ug are mapped to the particle
position through gradient interpolations. Because the collocated
finite volume discretization of the transport equations is employed
in FLUENT, all Eulerian scalar values as well as their gradients are
defined at the cell centre. The scalar gradients are computed using
the divergence theorem:

∇
r = 1
	V

Nf∑
f


̃f Af (29)

where 	V is the cell volume, and Af is the normal vector pointing
out of the cell face f. The face values 
̃f are calculated by averaging

 from the two cells adjacent to face f. Then the scalar value at the
particle position is expressed by


p = 
c + ∇
r · dr, (30)

dr = xp − xc

where xc and xp are the cell centroid vector and the particle posi-
tion vector, respectively. To map the pressure gradient force to the
particle position, the gradient for each component of the pres-
sure gradient force is evaluated too. The above mapping method is
very simple and more efficient and flexible, when compared to the
bilinear or tri-linear interpolations [2,23]. The latter interpolation
methods are only suitable for structured regular grids.

For the momentum source term due to forces exerted by the
dispersed phase on the gas phase, the integration of Eq. (3) is taken
over the grid cell:

Sg = − 1
	V

NPC∑
k=1

Vp,kˇn
p,k

1 − εn+1
(un+1

g − un+1
p,k

) (31)

where NPC is the number of particles associated with the cell, and
Vp,k are the corresponding fractional volumes. Consistent with the
interpolation from the Eulerian grid to the particle centre, this for-
mula implies that a particle may be acted on and also react to the
fluid in several Eulerian cells. The source terms are linearized as
said in Section 3.2 and the final linear coefficient is

B = − �g

εn+1

(
εn+1 − εn

	t
+ un+1

g · ∇εn+1

)
− 1

	V

NPC∑
k=1

Vp,kˇn
p,k

(1 − εn+1)εn+1

(32)

It can be seen from Eqs. (28) and (31) that all the particle momen-
tum increase gained from the gas phase is feed-backed to the gas.
That means a conservation of the momentum exchange due to the
two-phase drag interactions. This owes to the combined facts: (i)
the nonlinear drag force is linearized and the drag coefficient is
evaluated explicitly; (ii) both the particle and gas velocities are
calculated in the same time layer. Before iteration in a time step,
the drag coefficient for each particle is first calculated according to

the two-phase velocities in the last time step along with the gradi-
ent of the void fraction. Then, in each iteration for solving the gas
pressure–velocity equations, the gradients of the involved Eulerian
variables are calculated according to Eq. (29), and the linearized
particle momentum equations are solved. At the same time, the
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as source terms due to the volume fraction exchange and inter-
hase momentum transfer are evaluated in each iteration step. The

teration stops only when the solutions of both the gas mass and
omentum equations converge.

It must be noted that the gas momentum source is calculated
mplicitly. The linear coefficient including the part due to two-phase
rag interactions, in the source term, is automatically absorbed into
he principle diagonal elements of the AMG solver matrix, which
hysically enhances the two-phase coupling and numerically helps
he solution convergence. The particle drag force exerted on the gas
s weighted by the particle fractional volume, which has a smooth
ffect on the source forces and helps numerical stability.

The solution of the particle velocity and the gas field is syn-
hronized in FLUENT, resulting in a strongly implicit two-phase
oupling. The present coupling algorithm differs significantly from
hat presented by Hoomans et al. [2]. In the latter, the two-phase

omentum equations are solved in a segregated way, which means
n explicit two-phase coupling. Moreover, in Ref. [2], the particle
elocities are mapped back to the Eulerian grid and the gas source
erm is evaluated according to Eulerian properties, which is not
uite in-line with the discrete feature of the particulate phase.

.3. Data structure for collision events

Detection and handling of potential collision events in hard-
phere DPM often cause a heavy computational burden. Relatively
ittle progress has been achieved in the development of the
ard-sphere DPMs regarding the handling of the collision events
ompared to other aspects such as collision dynamics and
uid–particle interactions. Hoomans [27] discussed several opti-
ization strategies for collision event handling in the context of
PM. A reduction in computation time was achieved using these

trategies yet the complexity is of order O(Np) only because no
roper data structure was introduced to handle the event list.
ikewise, Hoomans [27] presented a simple algorithm without a
omplex data structure that resulted in O(Ng) complexity. Ng is
he number of cells in the domain. To the best knowledge of the
uthors, the O(log Np) priority queue algorithms that are widely
sed in MD simulation [28–30], have not been implemented in
he DPM framework to determine the current collision events. The
im of this sub-section is to present a new efficient approach to
uild a complexity O(1) priority queue suitable for hard-sphere
iscrete particle modeling. The chained hash-table concept is intro-
uced to speedup both insertion of collision events and location
f the current event with the minimum collision time. The cross-
ise linking data structure for event list is used to determine

nd delete all invalid events associated with any colliding particle
air.

The basic algorithm for collision event handling is described for
system of NP particles denoted by p = {0,1, . . ., Np − 1}. The system
occupies a simulation domain that is discretized into Ng finite

olume grids. A collision event involving two particles m and n is
enoted by Cm,n = (m, n, tm,n) where tm,n is the collision time for the
article pair (m, n). The collision time can be calculated according to
he positions of the particle pair [2,24]. A variable tc is introduced
o mark the time point at which the current collision is handled.
he algorithm to handle all possible collisions in a given time step
t is summarized as follows:

S1. Scan all particles and build up the collision event list, set tc = 0;

S2. If there is no event in the event list, go to the next simulation
time step; else
S3. Determine the current event Cm,n having the minimum collision
time in the list;
S4. tc = tc + tm,n, update particle positions: xp = xp + vptm,n
Journal 152 (2009) 514–529 521

S5. Update velocities of the current pair (m, n) using collision
dynamics;
S6. Detect future possible events for the current pair (m, n);
S7. Update the event list. Go to S2.

If Nc is the number of collisions handled within a time step, it
is evident that S2–S7 will be repeated Nc times in that time step.
For the same flow conditions, this frequency should be proportional
to the particle number Np, so at this stage we just assume that Nc

is of the same order as Np. It means that if millions of particles are
involved in the computation, steps S2–S7 will be computed millions
of times. Thus one should pay close attention to these steps while
optimizing the algorithm. Indeed, any loop in these steps must be
avoided as far as possible. Though time-consuming, all particles
must be scanned when initializing the collision list in S1. We intro-
duce the complexity in time to illustrate a rough evaluation of the
looping times for a given operation. In the following discussions, the
computation complexity of S1 is evaluated for one particle, while
those of S2–S7 are evaluated for the handling of one collision event,
that is, for one collision iteration.

By introducing a neighbor list for each particle, only the neigh-
borhood particles are scanned to detect potential collisions. Thus
the complexity for S1 and S6 is O(Nnb). Nnb is the average parti-
cle number in the neighbor list. A neighbor list is constructed as
follows:

Partnerm = {n|∀n ∈ P, |xn − xm| < Rs, m /= n}
It can be compiled for each particle m ∈ P before initializing the
collision list. For a mono-disperse system, Rs can be determined by

Rs = dp + 2|v|max	t

|v|max is the maximum particle velocity.
Since there is no loop involved in S2 and S5, the complexity for

these two steps is O(1). By introducing a time stamp for each parti-
cle to mark the last updating time point, only the current colliding
pair needs updating of their positions. So the complexity of S4 is
also O(1). When updating the event lists in S7, all events related to
the current pair and their neighboring particles should be updated.
If the events in all lists are arranged in an unsorted way, the com-
plexity order of S7 should be O(Nnb). Applying the local minimum
algorithm in MD studies [28,29], the individual event list associated
with the particle, is constructed as follows:

LPm = {(m, n, tm,n)|∀n ∈ Partnerm}
A global list having Np elements is composed of the event with the
smallest collision time in LP:

GLP = {(p, n, tp,n)|∀p ∈ P, (p, n, tp,n) ∈ LPp

and ∀(p, m, tp,m) ∈ LPp, tp,n < tp,m, m /= n}
If a complete binary tree (CBT) data structure is employed for GLP,
the O(1) and O(log Np) complexity can be achieved for S3 and S7,
respectively. Otherwise, only the O(Np) complexity can be achieved
for either S3 or S7, if the events in GLP are stored in a linear linked
list.

Hoomans [27] utilized the finite difference grid and introduced
a global list for all cells together with local lists for each cell. The
complexity of operations on global list in S3 is close to O(Ng). Usu-
ally, the number of grid cells Ng is at least one order less than that of
the particles Np. This strategy results in a substantial cut in the CPU

time dedicated for handling collision events in DPMs, compared
to the O(Np) algorithm. However, in this strategy, all cells includ-
ing those that do not contain any particle and/or those where no
collision is taking place are scanned. These cases are often encoun-
tered in heterogeneous fluidized beds. In addition, finding the event
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ig. 5. Illustration of the crosswise linking of collision events: (a) three kinds of linka
ext and preceding objects, respectively. “null” means a zero pointer without any o
he events in the donor and acceptor lists of particle p.

ith the smallest collision time in the cell hosting the collision pair
rings additional computational overhead. Since a particle is also a
artner of its partner, it’s evident that the collision partners as well
s the collision time are stored redundantly. The duplicate storage
f collision events also discounts the efficiency of the algorithms
entioned above.

To avoid additional overhead brought up by the redundant stor-
ge of the potential collision events, we first introduce a crosswise
inking data structure for events in collision list. Three linkages for a
iven event Cp,q = (p,q,tp,q) are built up and maintained when updat-
ng relevant collision lists. The C-Language pointer is introduced to
ccess the linked event. The pointer variables for these linkages
re all defined in the event data structure, which means that the
vent object is self-explained or any information related to the col-
ision can be accessed from the pointer to the event object. This
llows the unique storage for each event in the lists said above.
s shown in Fig. 5, the first linkage is the individual-donor list for

article p, LPDp, which is defined as the set of potential collision
vents detected when particle p is the host. The second one is the
ndividual-acceptor list for particle q, LPAq, which is defined as the
et of collision events detected when the partner of particle q is the
ost. The third one is used for the global list. Thus, a given event

ig. 6. Logical view of a chained hash table. When two or more events are mapped to the s
ime is normalized by 	tc.
maintained for a given collision event (8, 5, 0.1). “Next” and “pre” are pointers to the
ointed to it; (b) Two pointers for a given particle p are responsible for maintaining

Cp,q = (p,q,tp,q) is certainly contained within the lists LPDp and LPAq,
and may be contained in the global list GLP. The collision event is
crosswise linked into these lists through a doubly linking struc-
ture (see Fig. 5a). Thanks to this type of structure, the previous
and the next element can be determined without scanning from
the list head during the element deleting and updating operations.
Because a given particle p can be a host or an acceptor, it is always
associated with both the donor list LPDp and the acceptor list LPAp.
Two pointer variables associated with the particle p are allocated to
store the memory locations of the head elements of these two lists,
respectively, as shown in Fig. 5b. When operating collision events
(inserting into or deleting from a list), we always take the first parti-
cle in the pair as the host and the second as the acceptor. This makes
the updating operation of the donor and acceptor lists straightfor-
ward. For instance, when initializing the individual lists in S1, we
just need to scan the particle p with its partners whose indexes are
smaller than p, to build the list LPDp:
LPDp = {(p, n, tp,n)|∀n ∈ Partnerp, p > n}

At this stage, the acceptor lists LPAn of its partners are built up too.
For particle p’s partners that their indexes are larger than p, we get

ame location in the hash table, they are chained in a doubly linked list. The collision
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loop. The loop indicator presents the location of the current event
in the hash table. When the last recode of the hash table is null, it
means there is no longer event in this time step. Since the capacity
of the hash table is chosen close to Nc, the expected complexity to
C.L. Wu et al. / Chemical Engin

he list LPAp:

PAp = {(n, p, tp,n)|∀n ∈ Partnerp, p < n}

By taking advantage of the cross-linking structure of the col-
ision events, any relevant particle and/or collision event can be
asily identified without searching in the corresponding individual
ists. Since there is only one entity of any event, there is no addi-
ional scanning to update the individual lists for the partners of the
olliding pair. Moreover, by sorting the elements in the individual
ists, only the first element (local minimum one) in the donor list
s added to the global one so that there is no duplicate event in the
lobal list. The additional operation on the global list is avoided too.
hus, in S7, before building up the individual lists for the colliding
air, their corresponding events in the old lists are invalidated and
leaned, resulting in an efficient update of the local event lists and
n O(1) complexity of this step.

In computer science, a hash table, or a hash map, is a special data
tructure that associates keys with records. The primary operation it
upports efficiently is a look-up: given a key, find the corresponding
ecord. It works by transforming the key using a hash function into a
ash code, a number that is used as an index in an array to locate the
esired location where the record should be. Hash tables support
he efficient insertion of new entries, in expected complexity of O(1)
n time.

Herein a chained hash table is introduced for the storage of the
vent in the global list GLP as shown in Fig. 6. The one-dimensional
rray is used to implement the hash table. The key of the hash table
s the collision time tm,n and the record is the memory location
ointing to the corresponding event in the individual-donor list.
e implement the individual-donor list LPD as a priority queue so

hat only its first element is mapped/inserted into the hash table.
he individual-acceptor list is implemented as an unsorted linked

ist since there is no need to pick events from this list (an O(1)
omplexity is achieved for insertion and deletion on this list).

To satisfy the priority queue requirement of having the event
ith the smallest collision time accessed first in the hash table, the

ash function should be well designed to map orderly the collision
imes to integers or indices I and to locate the position where the
vents are in the table. A simple hash function is defined as

(tm,n) = INT(tm,n/	tc) with 	tc = 	t/Nc, (33)

here the function INT(x) gives the integral part (lower integer)
f x. If the particles collide successively in a uniform time interval,
he above hash function maps only one element to a table location.

hen inserting a collision event, its address or index in the global
ist is determined by the hash function without any loop and the
xpected computational complexity in time will be reduced to O(1).

However, one cannot determine in a priori manner the number
f collisions in a time step. Considering the slow change of a given
as–particle system through the small time steps that are often
sed in DPM simulations (at least one order less than the particle
esponse time), the number of collision occurrences for successive
ime steps should change very little. As a direct consequence, the
ength/capacity of hash table will also vary little. In fact, the num-
er of collisions Nc in Eq. (33) is actually selected as that in the last
ime step N0

c . Another fact is that the particles in gas–solid system
ay never collide in a uniform time interval, which may generate
same index using the hash function Eq. (33). This conflict prob-

em can be solved by chaining [31]. By the chaining methodology,
he hash table looks like a two-dimensional array with a variable

ength for the second dimension, or like a one-dimensional array
f priority queues, as shown in Fig. 6. Because the length of the
ash table is chosen properly and it is a nearly continuous func-
ion of the collision number in gas–solid system, chaining events
s very rare process (in real simulations, the number of events in
Journal 152 (2009) 514–529 523

the chained lists is often less than 3). Thus the chained hash-table
strategy gives exactly an O(1) complexity in computational time for
event insertion.

As discussed above, there are three types of linkage to be main-
tained for any given event. The third linkage for the global list GLP
is used here for chaining in the hash table, as shown in Fig. 6. The
event address/hash code in the hash table is stored with the cor-
responding event using an integer variable. When the head event
Ca,b in the donor list LPDa is inserted to the hash table, its linkages
in both the donor list LPDa and the acceptor list of the particle a
are kept. That means for any given event, whenever it is mapped to
the hash table, its three linkages are retained. If Ca,b becomes the
current event, it will be released to the event pool while handling
it, together with all other elements in LPDa. Otherwise if there is an
event Cb,m occurring before Ca,b, Ca,b will be released together with
all other elements in LPAb because particle b is the acceptor part of
the collision when the event Cb,m is processed. In the former case,
there is no additional operation on the hash table since only the
head event Ca,b in LPDa is mapped to the hash table. In the latter
case, a null pointer is directly assigned to the location in the hash
table indicated by its hash code if any element in LPAb (such as Ca,b)
has been mapped to the hash table. As shown in Fig. 6, the events (8,
10, 2.4) and (10, 5, 21.6) are marked invalid since they are associated
to the individual lists of the current colliding pair (5, 8). Event (8,
10, 2.4) can be released from the chained hash table by re-linking
its previous and next objects maintained in its third linkage point-
ers. Event (10, 5, 21.6) can be released directly by assigning a null
pointer in the location (21) of the hash table. By the crosswise link-
ing data structure, all events in the individual lists can be deleted
without any searching. Thus the complexity for event deletion is
also O(1). Because there is no duplicate event, the deleting oper-
ation is minimized. The simulation is forwarded by scanning the
entire hash table from the beginning. This can be done in a simple
Fig. 7. (a) Grid mesh of the cylindrical bed; (b) the particle volume fraction at the
centre of the cross-section calculated by simple method (top) and accurate method
(bottom).
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Table 1
Diagnostic numerical simulation parameters.

Bed diameter 0.2 m
Bed height 0.6 m
Stagnant bed height 0.2 m
Centre jet diameter 0.02 m
Minimum fluidization velocity Umf 0.85 m/s
Background inlet gas velocity 1.2Umf

Centre jet gas velocity 20Umf

Particle diameter 1.5 mm
Particle density 2400 kg/m3

Cell number 11,580
Particle number 1,770,000
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Table 2
CFB simulation parameters.

Riser diameter 0.1 m
Riser height 1.0 m
Superficial gas velocity 5.46 m/s
Particle diameter 800 �m
Particle density 2520 kg/m3

Grid number 17,440
Particle number 521,000
Restitution coefficients en , et 0.95, 0.4
Friction coefficient �f 0.2
Time step 	t 0.0001 s

ocate the current event is also O(1). In summary, by resorting to the
hained hash table methodology, all operations of collision events
re performed at the computation complexity of O(1).

. Performance and capability of the model

Since many researchers [2,10,23,24] have verified and validated
he hard-sphere DPM by comparing numerical results with experi-

ental observations and features of the model have been revealed,
erein attention is paid to the new characteristics of the model from
he viewpoints of performance, capability and applicability, partic-
larly when applied in conjunction with unstructured meshes. In
he following test cases, the inter-phase drag force is calculated by
he Gidaspow’s drag formula [17]. All the numerical simulations
ere carried out on a PC platform (Intel Corel E6600TM series).

.1. Single bubble in cylindrical bed

To examine the model efficiency, several diagnostic simulations
f a cylindrical bed were conducted. The cylindrical domain is
eshed by unstructured hexahedral cells as shown in Fig. 7a.
n these numerical experiments, the particle number is large,
eaching about 1,800,000. The numerical parameters are specified
n Table 1. At the beginning, the particles are distributed uniformly
t the bed bottom with a porosity of about 0.52. Although the
verage cell size is about 300 times bigger than that of a particle,

Fig. 8. Ratio of the CPU time for computing particle collisions using
Restitution coefficients en , et 0.97, 0.35
Friction coefficient �f 0.1
Time step 	t 0.0001 s

the distribution of the void fraction in the stagnant bed (at the
vertical cross-sectional plane y = 0) calculated by the proposed
method is much more uniform than by a simple way of neglecting
the split of the particle volume between adjacent cells, as shown in
Fig. 7b. Besides, the number of iterations required for the solution
of the two-phase momentum equations to converge is reduced
from an average of 24 ± 2 to 16 ± 2; it was reduced by about 33%
in each time step, which saves 15–25% of the CPU time. When the
look-up table of the void fraction was used, additional 2–5% CPU
time on calculation of the two-phase momentum equations was
saved. The void fraction is very important to the gas mass balance,
so a smooth and accurate distribution ensures numerical stability
and speeds up the solution convergence. It is also a key parameter
to estimate the gas–solid drag forces. So from both the physical and
numerical points of view, the void fraction should be calculated
accurately in discrete particle simulations.

Fig. 8 shows the computational cost linked to the particle
collision dynamics. The result is presented as a ratio of the compu-
tational time consumed in a simulation that uses the chained hash
table strategy to the one necessary for a simulation without the said
strategy. The data of the first 160 simulation time steps is selected
for comparison. When a large number of collisions is involved in a
time step (especially when it is equal to or larger than the particle
number), it can be seen, that about 90% of the CPU time is saved
if the hash table is used. In these simulations, the maximum CPU

time consumed in a time step is about 256 s if the hash table strat-
egy is not applied, but is reduced to less than 20 s when it is used.
Similar 2D simulations were performed and we found out that up
to 98% of the CPU time is saved if the hash table storage for the

chained collision events table to that using linear global list.
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ig. 9. 3D bubble shape simulated by DPM: (a) bubble formation (the iso-surfac
ross-section plane at t = 0.2 s.

ollision list is applied. This is because the 2D collision dynamics
s simpler than that of the 3D, resulting in a higher computational

eight regarding the handling of event lists. Based on our numer-
cal experiments, the time to simulate a 3D dense particulate flow

ith more than 500,000 particles is not acceptable if the hash table
trategy is not used. It should be noted that the collision dynamics
mplemented in this study is a rigorous hard-sphere model without
article overlap, which is different from that by Helland et al. [14].
he 3D model can correctly predict the bubble shape change from
lliptic to spherical as the bubble wake gradually forms as shown
n Fig. 9, which agrees with the experimental observations [32].
.2. Core–annulus flow structure in cylindrical riser

The gas–solid flow hydrodynamics in CFB risers has attracted a
ot of research interest in recent decades because of its wide applica-

Fig. 10. Time-averaged axial distribution a
resents ε = 0.8) and (b) particle volume fraction distribution at the centre of the

tions in industry. The granular flow in a CFB riser is often featured by
a high concentration of solids flowing downward near the walls and
a core dilute region with upward flowing solids. This is the so-called
core–annulus flow structure that has been reported by many exper-
imental studies [33–36]. Although the Eulerian two-fluid model is
often used in numerical studies, the discrete particle model has the
potential to clarify many of the flow characteristics in the CFB risers
[11,13–15]. However, 3D discrete particle simulations of the cylin-
drical riser have not been successfully implemented, so far to the
best of the authors’ knowledge. The 2D DPM under-estimates the
particle–wall interaction in quasi-2D problems and hence may not

be able to simulate accurately the heterogeneous structure in real
3D CFB risers.

A laboratory scale riser with a diameter of 0.1 m and a height of
1 m is simulated by the present 3D model. Particle properties and
numerical parameters are given in Table 2. It is relatively difficult to

nd radial profiles of particle holdup.
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nalyze the numerical diffusion for DPM than for TFM, since the for-
er is related to the two-phase coupling algorithm. For two-phase

ow simulated by TFM or general single-phase flow simulated by a
nite volume method, the numerical diffusion is mainly caused by

he mesh quality and the numerical scheme used to calculate the
calar value at the cell faces when integrating the transport equa-
ions. While for DPM, the source terms in the momentum equations
f the continuous phase may cause additional diffusions, because
he momentum exchange is evaluated not only by the cell scalar
alues, but also related to the particle velocities in the Lagrangian
oordinates. It is well known that the use of hexahedral cells results
n less numerical diffusion than the tetrahedral cells since more
aces are involved to evaluate the scalar gradient. Thus, to reduce the
umerical diffusion, the unstructured hexahedral grid is adopted
o mesh the domain and the second-order upwind scheme is used
o calculate the scalar value at the cell face. Gas-phase turbulence
s not taken into account. At the beginning, the particles are dis-
ributed uniformly inside the cylindrical column with an average
oidage of 0.982. The particles are introduced to the inlet gradually
ver several time steps to void numerical instability after travelling
ut of the riser outlet. The simulation is run for 12 s real time. To
educe the influence of the initial conditions, time-averaged results
re obtained for the last 6 s of the simulation. The CPU time is about
50 h for one simulation run.

Fig. 10 shows the time-averaged axial solids holdup and the
adial profiles of the particle volume fraction at different bed levels.
t can be seen that the dense regime exists at the riser bottom below
.1 m, with the solids fraction between 0.05 and 0.08, about two to
our times the average solids holdup. Above z = 0.2 m, the fast flu-
dization regime can be noticed with an almost constant axial solids
oldup. However, the radial particle distribution is not uniform and

s characterized by the core–annulus flow structure with dense
olids flowing downward nears the wall and a more dilute core
owing upward in the riser centre. The particle velocity distribu-
ion at two vertical cross-sections through the riser centre is shown
n Fig. 11. It can be seen that the flow is not axi-symmetric and the
article vertical velocity is higher in the core region than in the
nnulus region. The particle radial profiles at different levels indi-
ate that the higher the cross-sectional average solids holdup, the
ore non-uniform the radial distribution is, resulting in a thicker

nnular down-flow layer, which agrees well with the experimental
bservations [33,34].

The numerical model also captures the transient state of the
eterogeneous structure such as particle clusters or sheets near the
iser wall, as shown in Fig. 12. The snapshots reveal that the particle
lusters or swarms form first near the wall. Two regions of particle
irculation exist below and above the swarm (see Fig. 12b), which
ead to a converged flow regime at the interface. The shear move-

ent of particles in the interface elongates the swarm and forms
he particle sheet. Because of the particle–wall interactions the par-
icle sheet twists to form a U-shape. The particle sheet disappears
nd splits into discrete particles as the particle shear movement
ontinues. The cluster shape and size are comparable to the obser-
ations reported by Horio and Kuroki [37]. Since the particle flow
ehavior can be resolved transiently at the individual particle level,
he 3D discrete particle model presented here is a powerful tool for
nalyzing the heterogeneous structures taking place in CFB risers.

.3. Spout–annulus flow structure in flat spouted bed

The gas–solid spouted beds can provide good mixing and con-

act between gas and coarse particles. They are often characterized
y a dense region of downward particle flow called the annulus,
dilute core region of upward particle flow called the spout and

he fountain region with centre upward and outer downward par-
icle motion. Because the particle regime in the annulus is very
Fig. 11. Time-average particle velocity distribution at two cross-sections of the cylin-
drical riser: (a) x = 0 and (b) y = 0.

dense and the particle–particle interactions are mainly contact-
dominated, the discrete or distinct element model, in which the
inter-particle interaction is described by the soft-sphere model, is
popular in Lagrangian simulations of the spouted bed [38,39]. In
these studies, the structured grid is adopted and the conical part of
the bed is meshed in a stair-step way.

Zhao et al. [38] studied experimentally both the time-averaged
and instantaneous flow behaviors of granular solids in a quasi-2D
spouted bed and compared their 2D DEM simulation results with
the experiment. We performed a 3D discrete particle simulation
of the quasi-2D spouted bed using the proposed model. The bed
dimensions and simulation parameters are the same as those of the
experiment in Ref. [38] and the collision coefficients are selected as

�f = 0.15, en = 0.95, and et = 0.35. A hybrid mesh combining hexahe-
dral and wedged cells is used with the total cell number of 6231 and
the time step is set to 0.0001 s. Because there are steep gradients
of the gas velocity near the interface between the spout and the
annulus, the Saffman lift force due to gas shear flow is taken into
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ig. 12. Snapshots of heterogeneous structures in the riser simulated using 3D DP
hase and (b) cell-averaged particle velocity field at x = 0 cross-section between z =

ccount as follows:

Saff = 1.61d2
p(��g)1/2|�g |−1/2(ug − up) × �g

here �g =�× ug is the gas vorticity.

Fig. 13 shows the flow pattern of particles at different points of

ime. The numerical simulation captures the main features of the
pouted bed: the annulus, the spout and the fountain flow regions
re distinguished very clearly. The transient granular flow is not
teady but appears to be periodic. Also, a denser neck appears near

Fig. 13. Snapshots of particle distribution simulated by 3D DPM (color from
particle cluster or swarm elongated to sheet with iso-surface representing dense
and z = 0.88 m.

the inlet, flows upward and finally disappears at the end of the
spout. That means the particles do not move individually but as a
cluster in the spouting region. While the particle cluster in the neck
moves upward, it progressively grows bigger and denser with more
particles entrained from the annulus. When it reaches the spout

end, the spout is almost ‘choked’. After that the cluster is injected
into the fountain and the particles fall down to the annulus. The
above flow behavior agrees well with the experimental observa-
tions [38,40]. The predicted period is about 0.11 s, which is slightly
less than the experimental one (0.15 s). The time-averaged parti-

blue to yellow denotes particle velocity magnitude from 0 to 1.1 m/s).
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Fig. 14. Comparison of time-averaged particle velocity field: (a) experimental
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which was considered as a result of the simplification of the 2D
simulation including errors in the calculations of porosity and/or
drag force [38]. The overestimated spout height and particle veloc-
ity in the fountain may be caused by the Gidaspow’s drag formula
used in the present simulation, which over-predicts the two-phase
esults by Liu et al. [40] (the top part of the fountain is not shown because of the
mall number of particles measured there, see Liu et al. [40]) and (b) 3D DPM results,
egion between thick lines (zero vertical velocity) is spout.

le velocity simulated by the present 3D DPM is compared with
hat of the experiment, as shown in Fig. 14. Based on the particle
elocity field, the interface separating the spout and the annulus
an be delineated, where the particle time-averaged vertical veloc-
ty is zero. The predicted spout height is about 0.088 m, close to the
xperimental value of 0.08 m. The predicted time-averaged flow
lso agrees well with that of the experiment, but the particle veloc-
ty in the upper spout and fountain is over-predicted. This can also
e noticed on the axial and lateral profiles of the particle vertical

elocity as shown in Figs. 15 and 16. The particle vertical velocity
eaches 1.1 m/s, larger than that of the experiment, at the spout
nd. The axial profile shows that the particles accelerate more in
he lower spout than in the upper spout, which agrees with the
Fig. 15. Comparison of vertical particle velocity along the spout axis with that of
experiment by Zhao et al. [38].

experimental observations. It can be seen that the particle vertical
velocity reaches maximum in the spout centre and declines to zero
which is defined as the interface separating the spout and the annu-
lus. This is caused by two combined effects: (1) the centre gas jet
has a maximum velocity which results in a maximum drag on the
particle in the spout centre; (2) the flow is dilute in the spout centre
and inter-particle frictional interaction (shear force) is less signifi-
cant than in the interface. The expansion of the radial position of the
vertical velocity reflects the expanding shape of the spout, which
is also shown in Fig. 14. Particles accelerate almost in the whole
spout region. This phenomenon is completely different from the
traditional conical spouted bed, in which particles only accelerate
for a very short period near the inlet orifice and gradually decel-
erate through the spout [41]. The difference may be caused by the
formation of cluster in the spout. In conical spouted bed, no parti-
cle cluster or “chocking” was observed and the flow is dilute in the
spout [41,42]. The voidage inside the forming cluster is considerably
low which results in a higher drag force to the particles (the drag
force is correlated to the voidage), which causes the particles in the
cluster to accelerate. The lateral particle velocity profiles predicted
by the 3D DPM show better agreement with those of the experi-
ment than those by the 2D DEM [38]. The latter under-estimated
the particle vertical velocity in the spout (see Fig. 5b in Ref. [38]),
Fig. 16. Lateral profiles of vertical particle velocity at different levels.
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rag force when the heterogeneous flow structure forms in the bed
13,19].

. Concluding remarks

A robust and efficient three-dimensional discrete particle model
ased on unstructured grids was developed under the CFD platform
LUENT with the aim to simulate gas–solid systems with large num-
er of particles. Compared with other discrete particle models in the

iterature, the model has the following advantages:

1) For the general case of 3D unstructured meshes, the void frac-
tion in the cell is calculated accurately when a particle is not
contained wholly within one cell.

2) The chained hash table strategy is applied together with the
crosswise linking storage of the particle collision events, which
greatly improves the computational performance of the colli-
sion model and allows the numerical simulation of gas–solid
systems having a large number of particles.

3) Strongly implicit two-phase coupling is adopted, which greatly
enhances the numerical stability and speeds up the solution
convergence.

4) Special treatments are adopted to implement the present model
under the basic incompressible flow solver of FLUENT and full
customization of the model is achieved.

The numerical results show that the present model can capture
any important features of the gas–solid flow systems, such as bub-

les in a bubbling fluidized bed, the core–annulus structure and
luster in a CFB riser, and the spout–annulus structure in a spouted
ed. It is important to mention that the present model cannot han-
le situations where the particle size is bigger than the grid size.
n ongoing work is currently dedicated to enhance the capabilities
f the algorithm to simulate any gas–particle system regardless the
ize of the grid or particles involved.
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